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space residuals, R 1, R 3 and R4, leads to values which 
are in good agreement with each other. The following 
points seem noteworthy. 

1. There is considerable evidence that the Luzzati 
method leads to overall values of I Arl which are 
consistent with the actual differences in the model 
coordinates. Some overestimation of IArl may be 
caused by the application of 'acentric equations' to the 
overall data. Our results have shown that different 
reciprocal-space residuals give results consistent with 
each other. We have therefore confirmed that these 
methods may be useful in the determination of I Arl in 
those cases where direct comparison of coordinates is 
impossible (e.g. medium-resolution studies). 

2. Our results confirm that Wilson's statistics may 
be applied successfully to both low- and high-angle 
protein diffraction data. Hence, the results of 
Parthasarathy & Parthasarathi (1972) may be used to 
calculate I Arl. 

3. We have found that the methods used gave 
consistent results for the region I sl > 0.21/~-]. R a was 
found to be the least-noisy function in this region. 

4. We have confirmed that the low-angle data is 
significantly affected by solvent scattering, which is 
also the cause of high background intensity. 
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Abstract 

There have been several recent efforts to account for 
the broadening of the superstructure Bragg maxima 
and their displacements in reciprocal space observed 
for partially transformed b.c.c, solid solutions contain- 
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ing the 09 phase. They have been concerned with 
intensity calculations from models for which the co 
regions are defective in a variety of senses. All of the 
models include only one m variant, while in fact the 
system must contain four equally likely variants. A 
method to correct the calculated intensity for inter- 
ference effects among the variants, omitted from these 
models, is described. It is applied to a specimen model. 
Possible applications of the method are discussed. 

© 1982 International Union of Crystallography 
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Though the concept is illustrated by its application to 
the o~ phase, it is readily generalized to any multi- 
variant system. 

Introduction 

A common phenomenon in solid-state transformations 
is the partial decomposition of a simple structure to one 
less symmetrical, oriented in a special way to the parent 
material. An example which has been of recent interest 
is the transformation upon cooling of b.c.c, solid 
solutions based on Ti or Zr, containing elements such 
as V or Nb, to the w phase. It is understood by 
considering the primitive rhombohedral cell of the b.c.c 
structure in terms of a hexagonal basis. Then e /a  = 
(3/8)1/2; atomic positions are 0,0,0; 2 1 1.  1 2 2 .  7,~,7, ~,7,7, and the 
structure factor vanishes unless - h  + k + I is a multiple 
of three. The ¢ axis of the hexagonal cell is one-half of a 
body diagonal of the cubic cell. Upon transformation 
the cell dimensions appear unchanged, but the atomic 
positions become 0,0,0; 2 1 1 2 7, 7,'} + u; 7, 7, ~ -  u. The 
parameter u is about ~ or less depending on the 
composition. The rhombohedral extinction constraint is 
relaxed and all hk l  appear in the diffraction pattern. 

However, the new diffraction maxima associated 
only with the transformed material (here called super- 
structure maxima) are diffuse and slightly displaced 
from their expected positions in reciprocal space. Fig. 
1, a contour map of diffuse neutron intensity measured 
by Moss, Keating & Axe (1974) from a Zr -20  wt % 
Nb alloy, illustrates these effects. A very similar map 
was observed with X-rays by Lin, Spalt & Batterman 
(1976). 
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Fig. 1. Contour map of the diffuse neutron intensity distribution at 
300K for Zr-20 wt % Nb quenched from 1273 K. The 
continuous variables h 1, h 2, and h 3 become the b.c.c. Miller 
indices at the fundamental Bragg maxima. The map is for the 
plane h a = h2. 

Attempts to understand the structural meaning of 
this intensity distribution have primarily consisted of 
interference calculations from models of the ~ structure 
into which a variety of defects are introduced. 
Examples are those of Borie, Sass & Andreassen 
(1973a,b; subsequently referred to as BSAa and 
BSAb), Kuan & Sass (1976), and Pynn (1978). 
Horovitz, Murray & Krumhansl (1978) have at- 
tempted to describe the defect as a soliton. 

An aspect of this transformation is that there are 
four equally likely orientations for the transformed 
regions, since there are four body diagonals of the cubic 
cell which may be parallel to the c axis of the co 
structure. These are the four variants of the system. 
Diffuse intensity from two of these is clearly visible in 
the map of Fig. 1. Though most of the diffuse intensity 
in this map is related to the variant whose c axis is 
parallel to the b.c.c. [111] direction, the tails apparent 
at approximately h 3 = 0.7 and h I = h 2 - -  1.3 and 2.3 
result from the variant whose c axis is associated with 
the b.c.c. [ 11 i ]. Within any one of them there are three 
possible choices of the origin atom which remains 
undisplaced on transformation. Each of these corre- 
sponds to a subvariant. The model calculations 
generate diffuse and shifted oJ superstructure maxima 
by the introduction of defects within an w region which 
allow transitions among the subvariants, so they are all 
equally likely. 

Hence from the point of view of accounting for 
interference effects, the system is rather complicated. 
There are thirteen orientationally different kinds of 
regions: there are the essentially isotropic untrans- 
formed cubic regions, the four variants, and within each 
of these three subvariants. 

None of the model calculations have dealt with this 
complication. Diffuseness and shifts of the super- 
structure maxima result from consideration only of 
interference effects among the subvariants within a 
single variant. At most the model atomic array is taken 
to be a single variant within a matrix of untransformed 
material. 

It is the purpose of this contribution to consider the 
diffraction consequences of the interference effects of 
the thirteen orientationally different kinds of regions 
within partially transformed alloys containing the w 
phase. Though the theory will be developed within the 
context of that system, it should be readily generalized 
to others. 

Theory 

We identify the variants with the index p. We let Upm be 
unity if site r m (the atomic position before transfor- 
mation) is in region p, otherwise zero. Let t~;m be unity 
if the atom at site r,,, is undisplaced on transformation, 
exp [ik. 5p] if the site is displaced +Sp parallel to the c 
axis of the pth variant, and exp [ - i k . 5 ; I  if the 
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displacement is -Sp (k is the diffraction vector). This 
scheme is illustrated in Fig. 2. With the atomic 
scattering factor taken to be unity, the scattering 
amplitude in electron units from the crystal is then {4 ) 

A = X exp [ ik.r  m] 1 + ~ ((~pm -- 1) Vpm . 
m p = l  

(1) 

We assume the model, the intensity distribution from 
which we seek to correct, has treated the crystal as 
though it were composed of only one variant, say 
p = 1, the rest of the crystal being untransformed. In 
effect, the transformed regions for p = 2, 3, and 4 have 
been excised and replaced by untransformed b.c.c. 
material. The fictitious scattering amplitude from the 
model is then 

A' 1 = ~ exp [ik.rml {1 + ((t im-- 1) Vim}. 
m 

To account for all variants it has been common to take 
the computed intensity to be 

4 

I ' =  }" A ' A ' *  - % o  -%0 
p = l  

4 

= }" ~ )," exp [ ik.(r  m - r,)] 
p = l  m n 

x 11 + ((tpm-- 1) Vpm} I1 + (ap*-- 1) v..}. (2) 

We wish to know the residual intensity AI  = I - I ' ,  I 
being A A *  computed from (1), and I '  as given by (2). 
We have {[4 ] 
A I =  }" ~, exp [ ik.(r  m - r,)] 1 -t- E ((Apm-- 1) Upm 

m n p =  1 

, ) - ~  [1 + ( % , . -  1)Vpm] [1 + (a* . - -  1) vp.] 
p = l  

Fig. 2. A schematic illustration of  a partially transformed region 
containing variants p = 1 and p = 2. Dotted lines indicate atomic 
plane positions before transformation. Planes in the untrans- 
formed b.c.c, matrix have been omitted since they may be drawn 
parallel to the planes of either regions 1 or 2. In region 1, t'im for 
all m is unity, otherwise zero. 

o r  

AI = ~ ~ exp [ik. (r m - -  r.)] 
m ti 

4 4 

× ~. ~ ( % m -  1)(aq*.- 1) VpmVq.--3I~,  (3) 
p = l  q = l  

(p:q) 

where I is the kinematic intensity sum before /3 . 
transformation: 

1/3---= ~ ~. e x p  [ ik .  ( r  m - -  rn)].  
m n 

By the usual means we reduce the double sum over 
m and n to a single sum. We are able to form many mn 
pairs in the crystal such that r m - r, = r i. Let Nj be the 
number of such pairs. Let the volume fraction of the 
crystal associated with one particular variant be x, and 
let Wpq(rj) be the probability that after first having found 
site n in variant q, we translate from it rj to site r m and 
find it in variant p. We assume that there is no 
correlation between subvariants for different variants; 
that is, 

( (apm--  1) (aq* - - 1 ) )  (constant r j ) =  ( % - -  1 ) ( % - - 1 ) .  

The averages on the right of the above expression are 
over all sites associated with a particular variant, hence 
the a 's  carry only a single subscript identifying that 
variant. Then (3) becomes 

A I =  ~_ Njexp [ik. rfl 
J 

4 4 

x ~ ~ xwpq(rfl(ap-- 1) ( a * - -  1 ) - -  31/3. (4) 
p = l  q = l  

( p  ,- q) 

We note that Wpq(rj) must approach x for large rj. We 
add and subtract an appropriate quantity to the triple 
sum of (4) to separate it into sharp and diffuse parts. 
For the diffuse part we also make the 'infinite crystal '  
approximation. Then 

AI = N x  2 ~ exp [ik. r/] 
J 

(p~:q) 

I ÷ 1/3 x 2 % -  1} 1 ) -  3 . (5) 
l q = l  

(p4:q) 

We are primarily interested in the diffuse part of (5), 
the intervariant interference correction to the diffuse 
intensity distribution computed from a fictitious single- 
variant model. We are further interested in expressing it 
only in terms of parameters that are determined by the 
model. 

Consider Wpo(r fl, the probability (in the real multi- 
variant partially transformed crystal) that after finding 
a site in variant q, the site r i from it is in variant p. In 
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the single-variant (say variant q) model crystal, let 
W(rj) be the probability that after finding a site in the 
variant, the site at rj from it is in the untransformed 
region. If we assume that there are no correlations 
among the variants in the real crystal, the chance that 
the site at rj was really in variant p, but was among 
those replaced by untransformed material to generate 
the single-variant model, is simply the total number of 
sites that are p divided by the total number of sites that 
are not q: x/(1 - x). Hence within that assumption, 
wpq(rj) = xW(rj)/(1 - x). 

We may now write the diffuse part of (5) in terms of 
model-dependent parameters only" 

( / 
p = l  q = l  

[ ]/ • 1 . ( 6 )  
• 1 - - x  

The computation of the trigonometric function 
corresponding to the double sum over p and q is 
straightforward. Suppose that the fraction of atoms 
undisplaced within a variant is S. Note that it need not 
be one-third; it will depend on the character of the 
defects which allow transitions from one subvariant to 
another and their density. The atomic displacements 
within a defective region also need not be the same as 
those within perfect 09 regions. However, if they are, 

(ap- -  1 ) = S +  ( 1 - S )  cos(k .  S p ) -  1 

-- (1 - S) [cos (k. S p ) -  II 

= -2 (1  -- S) sin 2 (k. 8p/2). 

For the variant related to the cell diagonal a I + a 2 + a 3 
(the an's being the b.c.c, basis vectors), 8; = (u/2)(al + 
a 2 + a3).  If k = 2n(h I b I + h 2 b 2 + h 3 b3) (the bn's being 
reciprocal to the an's, and the hn's continuous variables 
which become the Miller indices at the b.c.c, recipro- 
cal-lattice nodes), then 

( a p - - 1 ) = - - 2 ( 1 - - S ) s i n  2 [ ? ( h l + h 2 + h 3 )  ] . 

Analogous expressions for the other three variants are 
readily found and combined to give the double sum 
over p and q of (6). 

Note that the Fourier series given by the sum over j 
in (6) is in general negative since W(0) -- 0. Since (% 
- 1)(aq - 1) is always positive, AI o will be negative. 

A p p l i c a t i o n  o f  t h e  t h e o r y  

We have devised a single-variant model for a 
partially transformed crystal containing the 09 phase 
which is an elaboration and extension of those 
described in BSAa,b. As in those calculations the 

crystal is taken to be a three-dimensional mosaic of 
'bricks' of different but commensurate dimensions: (1) 
09 unit cells, containing three atoms and of height c. (2) 
Structural elements for the untransformed regions, 
containing one atom and of height c/3. (The model 
described in BSAa is a mosaic of only these two kinds 
of bricks; the intensity distribution associated with it 
exhibits broadened and shifted superstructure maxima, 
but in the wrong sense.) (3) Defective elements, 
containing two atoms and of height 2c/3. (BSAb is a 
description of the intensity calculation from a mosaic of 
bricks of types 1 and 3; its superstructure maxima are 
broadened and shifted in the correct sense. However, 
note that since these elements may not be derived either 
from the 09 or untransformed structures, the model 
crystal contains no untransformed material.) Our new 
model is an extension of the earlier calculations in that 
the crystal is taken to be a composite of all three kinds 
of structural elements. 

Fig. 3 is a diffuse intensity contour map computed 
from this model essentially by the methods described in 
BSAa,b. It is a multivariant map generated from a 
single-variant model via the tactic of (2). It therefore 
exhibits no interference effects among the variants of 
the system. We defer to a subsequent contribution a 
description of the details of the model and the diffuse 
intensity calculation. Fig. 4 shows a contour map of 
AI D, the intervariant interference correction for the map 
of Fig. 3, found from (6) and the specific parameters of 
the model. 

D i s c u s s i o n  

An interesting feature of the map shown in Fig. 3 is 
that, in addition to the diffuse and shifted superstructure 

4.0 

0.0 
0.0 1-0 2.0 

h, = h  2 

3.0 4.O 

Fig. 3. The relative diffuse intensity distribution in the plane h~ = h 2 
for the single-variant model described in the text. Closely spaced 
contours in the immediate neighborhood of the fundamental 
maxima have been omitted. 
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maxima, the model has generated diffuse maxima under 
the sharp fundamental reflections associated both with 
the co phase and its b.c.c, ancestor. Both of the 
calculations described in BSAa,b failed to achieve this 
result. The maxima are apparent in the experimentally 
determined contour map of Fig. 1. The main difference 
between the model giving rise to Fig. 3 and the earlier 
calculations is that it consists of co regions, rendered 
defective so that all subvariants are active, imbedded in 
a matrix of untransformed material. Interference 
among the subvariants, controlled by the nature of the 
defects, appears adequate to generate the general 
features of the diffuse intensity distribution in the 
neighborhood of the superstructure positions in re- 
ciprocal space (BSAb). However, the maxima centered 
on the b.c.c, reciprocal-lattice nodes seem dependent on 
interference between defective co regions and the b.c.c 
matrix. The contribution of Kuan & Sass (1976), in 
which the problem of computing a diffraction pattern 
from a model is approached from a very different point 

of view, is nevertheless concerned with the intensity 
distribution resulting from defective transformed 
regions imbedded in b.c.c, material. Like our model, 
their calculation considers only one variant and in 
effect generates a multivariant result via (2). It is 
interesting and suggestive that their result also exhibits 
diffuse maxima at the fundamental reciprocal-lattice 
nodes. Both their model, however, and that responsible 
for Fig. 3 fail to reproduce the relative strengths of 
these maxima shown in Fig. 1. The possibility that this 
part of the scattering pattern may reveal details 
concerning the sizes of the defective co regions and their 
distribution in the untransformed matrix is very 
interesting. 

The intensity map of Fig. 4 for AI D shows negative 
diffuse peaks at just the above discussed places in 
reciprocal space: the fundamental Bragg maxima. That 
this should be so is not surprising since these are the 
only regions where all of the variants are simul- 
taneously 'turned on'. Clearly the interference correc- 
tion here discussed must be accounted for before any 
attempt quantitatively to interpret such maxima from 
model calculations is undertaken. 
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Fig. 4. A contour map of the correction AI D. This intensity 
distribution must be subtracted from that of Fig. 3 to correct for 
interference effects among the variants. 

The author is indebted to H. L. Yakel who provided 
the computer programs to generate Figs. 3 and 4. 
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